

АЛКИЛИРОВАНИЕ ПРОИЗВОДНЫХ 5-АЦЕТИЛ-4-ФЕНИЛ-3,4-ДИГИДРОПИРИМИДИН-(1H)-2-ТИОНА

Колосов М.А., Орлов В.Д., Васильева Ю.М. (Харьков)

Разработана препаративная методика синтеза производных 5-ацетил-4-фенил-3,4-дигидропиримидин-(1H)-2-тиона. При действии алкилгалогенидов в метаноле в присутствии N-метилморфолина происходит их S-алкилирование, тогда как в смеси ацетонитрил-водный раствор КОН образуется смесь продуктов S(2),N(1)- и S(2),N(3)-алкилирования. Установлен состав таутомерной смеси S-моноалкилпроизводных, а также региоселективность реакции диалкилирования.

Preparative procedure for 5-acetyl-4-phenyl-3,4-dihydropyrimidine-(1H)-2-thione derivatives synthesis is elaborated. By action of alkylhalides their S-alkylation occurs in methanol in the presence of N-methylmorpholine, while mixture of S(2),N(1)-u S(2),N(3)-alkylation products is formed in acetonitrile-aqueous KOH solution. The composition of S-monoalkylderivatives tautomeric mixture is established, as well as regioselectivity of dialkylation reaction.

Последние 30 лет характеризуются бурным развитием химии производных 4-арил-3,4-дигидропиримидина, что связано с многообразием видов биологической активности, которым обладают соединения данного класса, а также их препаративной доступностью [1,2].

Многие из этих соединений, а именно производные 4-арил-3,4-дигидропиримидин-5-карбоновых кислот либо 4-арил-5-ацетил-3,4-дигидропиримидина, получают по реакции Биджинелли, заключающейся в трехкомпонентной конденсации мочевины, ароматических альдегидов и производных ацетоуксусной кислоты либо ацетилацетона соответственно.

Одним из основных методов синтеза перспективных биологически активных соединений является функционализация существующего гетероциклического скелета. Поэтому объектами исследования в данной работе стали производные 5-ацетил-4-фенил-3,4-дигидропиримидин-(1H)-2-тиона **1a,b**, которые, с одной стороны, позволяют модифицировать 2-меркаптогруппу за счет ее алкилирования, а, с другой стороны, содержат реакционноспособную ацетильную группу.

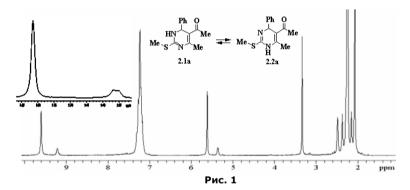
Известно [3], что алкилирование производных 3,4-дигидропиримидин-2-тион-5-карбоновой кислоты в метаноле приводит к получению 2-алкилтио-производных, а при дальнейшем алкилировании в качестве основных продуктов образуются 2,3-диалкилпроизводные.

$$\begin{array}{c} R^{1} \\ S \\ NH_{2} \end{array} + \begin{array}{c} R^{1} \\ O \\ Me \end{array} + \begin{array}{c} O \\ Me \\ HN \\ Me \\ H \end{array}$$

$$\begin{array}{c} Me \\ Me \\ HN \\ Ho \\ Ha.b \end{array}$$

Схема 1

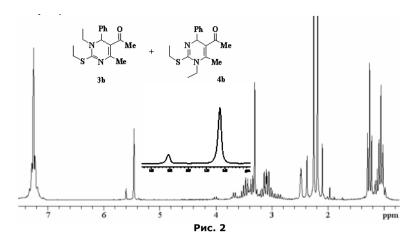
Поскольку ранее эти процессы рассматривались исключительно на примере производных 3,4-дигидропиримидин-2-тион-5-карбоновой кислоты, мы исследовали алкилирование соединений **1а,b** не только в стандартных условиях (в метаноле в присутствии N-метилморфолина), но и в системе ацетонитрил-концентрированный раствор КОН, которая также используется при алкилировании 3,4-дигидропиримидин-2-онов [4,5].


Поскольку классические условия реакции Биджинелли (кипячение в спирте в присутствии каталитических количеств кислоты [3,4]) приводят в данном случае к низким выходам, исходные соединения **1а,b** были получены в результате кипячения смеси тиомочевины, ацетилацетона и соответствующих альдегидов в ДМФА. Физико-химические свойства веществ **1а,b** полностью совпали с литературными данными [5] (схема 1).

Нами показано, что при нагревании соединений **1a,b** с метилйодидом либо этилбромидом в метаноле в присутствии N-метилморфолина происходит образование S-моноалкилпроизводных **2a-c** (схема 2). Эти продукты выделяются в виде гидрогалогенидов, поэтому дегидрогалогенирование осуществлялось действием концентрированного раствора аммиака. В результате были получены соединения **2a-c** – твердые бесцветные вещества, хорошо растворимые в этаноле, уксусной кислоте, этилацетате и нерастворимые в воде и гексане.

В ПМР-спектрах соединений **2а-с**, снятых в ДМСО- d_6 , присутствуют два набора сигналов, которые относятся к двум таутомерам этих веществ (**2.1a-с** и **2.2a-с** соответственно, схема 2).

Схема 2


На рис. 1 показан ПМР-спектр соединения **2а**. Определить, к какому именно из таутомеров принадлежит каждая группа сигналов, можно исходя из мультиплетности сигнала протона при С(4) дигидропиримидинового цикла: для соединений **2.1a-с** этот сигнал должен быть дублетом благодаря расщеплению на атоме водорода при N(3), а для соединений **2.2a-с** – синглетом из-за отсутствия подобного взаимодействия.

Действительно, в ПМР-спектре соединения **2a** сигнал протона при 5.62 м.д. проявляется в виде синглета, тогда как сигнал при 5.36 м.д. – в виде дублета (J = 2.4 Гц). Подобным образом были отнесены

также сигналы в ПМР-спектрах соединений **2b,c** (см. табл. 1). Соотношение количеств таутомеров в растворах соединений **2a-c** было определено по соотношению интенсивностей указанных сигналов (табл. 2).

Алкилирование соединений **1a,b** в более жестких условиях (ацетонитрилводный раствор КОН) привело к получению смеси диалкилпроизводных **3a-c** и **4a-c** (схема 2). Как пример, на рис. 2 показан ПМР-спектр полученной смеси соединений **3b** и **4b**.

Для соотнесения сигналов в этом спектре следовало провести NOE эксперимент на сигнале метильной группы $C(6)CH_3$ одного из региоизомеров. При этом следует ожидать, что для соединения **4b** должна увеличится интенсивность сигнала соседней CH_2 -группы. Поскольку не было достоверно известно, какой из двух сигналов метильных групп относится к $C(6)CH_3$, NOE провели на сигналах обеих метильных групп ($C(6)CH_3$ и $COCH_3$) преобладающего региоизомера – при 2.20 м.д. и 2.25 м.д. (соответствующие сигналы минорной формы имеют химический сдвиг 2.09 м.д. и 2.37 м.д.).

При этом сигналы CH_2 -групп (область 3.0–3.7 м.д.) не дали отклика, что указывает на принадлежность облучавшихся протонов к изомеру **3b**, а второй пары сигналов – к изомеру **4b**. Содержание как основного, так и минорного изомера мы оценивали, как и в случае соединений **2a-c**, по соотношению относительной интенсивности сигналов C(4)H-протонов (для указанных веществ $\delta(C(4)$ H) = 5.46 м.д. и 5.60 м.д. соответственно). Данные о содержании региоизомеров приведены в табл. 2.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Индивидуальность полученных соединений контролировали методом TCX на пластинах Silufol UV-254, элюенты – смеси этилацетат-октан в различных соотношениях. Измерение ПМР-спектров и NOE проведено на приборе Varian Mercury VX-200 (200 МГц) в растворах ДМСО- \mathbf{d}_6 , ИК спектры измерены на приборе Specord IR-75 в таблетках КВг (для жидких образцов – в тонкой пленке). Данные элементного анализа на азот всех полученных индивидуальных соединений соответствуют расчетным. Физико-химические характеристики полученных соединений представлены в табл. 1 и 2. Физико-химические данные соединений $\mathbf{1a}$, \mathbf{b} совпадают с приведенными в литературе [5].

Соединение 1а. Раствор бензальдегида (0.66 мл, 6.5 ммоль), тиомочевины (0.5 г, 6.6 ммоль) и ацетилацетона (0.66 мл, 6.5 ммоль) в 0.6 мл ДМФА кипятят 30 минут, после чего добавляют 3 мл этанола и кипятят еще 15 минут. Через 15-24 часа кристаллы фильтруют, промывают тремя порциями по 3 мл этанола. Получают $0.81 \, \mathrm{r}$ (50 %) продукта 1a. Аналогично получают соединение 1b (выход 50 %).

5-Ацетил-6-метил-2-метилтио-4-фенил-1,4-дигидропиримидин (2а). Раствор соединения **1a** (3 г, 12.2 ммоль), метилйодида (1.52 мл, 24.4 ммоль) и N-метилморфолина (1 мл) в 15 мл метанола кипятят 3 часа. Смесь оставляют на 15-24 часа, после чего вливают ее в 100 мл концентрированного раствора аммиака. Через 3 часа фильтруют осадок продукта реакции, промывают его водой, получая 1.88 г (62 %) соединения **2a**. Аналогично получают со-

единения **2b,c** (см. табл. 1,2).

5-Ацетил-3,6-диметил-2-метилтио-4-фенил-3,4-дигидропиримидин (3а) и 5-ацетил-1,6-диметил-2-метилтио-4-фенил-1,4-дигидропиримидин (4а) (смесь региоизомеров). Смесь соединения 1а (1 г, 4.06 ммоль), метилйодида (1.52 мл, 24.4 ммоль) и насыщенного раствора КОН (1 мл) в 10 мл ацетонитрила кипятят 1 час. Смесь выливают в 250 мл насыщенного раствора NaCl, экстрагируют 4-хкратно порциями по 30 мл EtOAc, экстракт сушат Na_2SO_4 . Растворитель отгоняют, получая 1.10 г (100 %) смеси соединений 3a и 4a (т. пл. 85°C). Аналогично получают смеси региоизомеров 3b/4b и 3c/4c (в виде масел).

Таблица 1. Свойства полученных соединений 2а-с, 3а-с, 4а-с № Выход. Т. ПМР-спектр.					
ΝŸ	Выход, %	Г. ПЛ., °С ¹)	ПМР-спектр, δ, м.д., мультиплетность, КССВ (Гц)	ИК- спектр, см ⁻¹	
2a	62	130-1	2.1a : 9.22 (1H, yw. д, $J = 2.4$), N(3)H), 7.17–7.41 (5H, м, Ph), 5.36 (1H, д, $J = 2.4$, C(4)H), 2.37 (3H, c, CH ₃), 2.29 (3H, c, CH ₃), 2.16 (3H, c, CH ₃), 2.2a : 9.60 (1H, yw. c, N(1)H), 7.17–7.41 (5H, м, Ph), 5.60 (1H, c, C(4)H), 2.26 (3H, м, CH ₃), 2.24 (3H, c, CH ₃), 2.07 (3H, c, CH ₃)	1469, 1575, 3263	
2b	40	118-20	2.1b : 9.17 (1H, yш. д, $J = 2.4$), N(3)H), 7.1–7.4 (5H, M, Ph), 5.36 (1H, д, $J = 2.4$, C(4)H), 3.2-2.7 (2H, M, CH ₂), 2.28 (3H, c, CH ₃), 2.16 (3H, c, CH ₃), 1.19 (3H, M, CH ₃ CH ₂) 2.2b : 9.54 (1H, yш. c, N(1)H), 7.1–7.4 (5H, M, Ph), 5.6 (1H, c, C(4)H), 3.0-2.73 (2H, M, CH ₂), 2.24 (3H, c, CH ₃), 2.08 (3H, c, CH ₃), 1.11 (3H, T, $J = 3.5$, CH ₃ CH ₂)	1462, 1602, 3283	
2c	40	122-3	2.1c : 9.55 (1H, yш. д, $J = 2.4$, N(3)H), 7.12 (2H, д, $J = 8.8$, ArH), 7.82 (2H, д, $J = 8.8$, ArH), 5.52 (1H, yш. д, $J = 2.4$, C(4)H), 3.68 (3H, c, OCH ₃), 2.26 (3H, c, CH ₃), 2.24 (3H, c, CH ₃), 2.05 (3H, c, CH ₃) 2.2c : 9.14 (1H, yш. c, N(1)H), 7.19 (2H, д, $J = 8.8$, ArH), 7.91 (2H, д, $J = 8.8$, ArH), 7.91 (2H, д, $J = 8.8$, ArH), 7.91 (3H, c, $J = 2.4$, C(4)H), 3.71 (3H, c, OCH ₃), 2.34 (3H, c, CH ₃), 2.15 (3H, c, CH ₃), 2.06 (3H, c, CH ₃)	1475, 1595, 3270	
3а	78	85	7.37-7.17 (5H, м, Ph) , 5.39 (1H, c , C(4)H), 3.01 (3H, c, N(3)CH ₃), 2.44 (3H, м, CH ₃), 2.29 (3H, c, CH ₃), 2.15 (3H, c, CH ₃)	1582, 1622	
3b	85		7.35-7.15 (5H, M, Ph), 5.46 (1H, c, C(4)H), 2.7-4.2 (4H, M, NCH ₂ , SCH ₂), 2.25 (3H, c, CH ₃), 2.19 (3H, c, CH ₃), 1.26 (3H, τ , J = 7.3, CH ₃ CH ₂), 1.06 (3H, τ , J = 7.0, CH ₃ CH ₂)	1575, 1589	
3с	59		7.17 (2H, Δ , J = 8.8, ArH), 6.84 (2H, Δ , J = 8.8, ArH), 5.37 (1H, c, C(4)H), 3.69 (3H, c, OCH ₃), 2.7–3.9 (4H, Δ , CH ₂ , NCH ₂ , SCH ₂), 2.24 (3H, c, CH ₃), 2.14 (3H, c, CH ₃), 1.25 (3H, Δ , Δ	1582, 1609	
4a	21	85	7.37-7.17 (5H, M, Ph), 5.66 (1H, c, C(4)H), 3.17 (3H, c, N(1)CH ₃), 2.39 (3H, c, CH ₃),	1582, 1622	
			2.32 (3H, c, CH₃), 2.13 (3H, c, CH₃)		

	·	4.2-2.7 (4H, M, NCH ₂ , SCH ₂), 2.38 (3H, c,	1589
		CH ₃), 2.10 (3H, c, CH ₃), 1.11 (3H, τ , $J = 7.4$,	
		CH_3CH_2), 1.01(3H, T , $J = 7.0$, CH_3CH_2)	
4c	41	 7.13 (2H, д, $J = 8.8$, ArH), 6.84 (2H, д, $J =$	1582,
		8.8, ArH), 5.52 (1H, c , C(4)H), 3.32 (3H, c,	1609
		OCH_3), 2.7-3.9 (4H, M, CH_2 , NCH_2 , SCH_2),	
		2.37 (3H, c, COCH ₃), 2.05 (3H, c, CH ₃), 1.24	
		$(3H, T, J = 7.2, CH_3CH_2), 1.11 (3H, T, J =$	
		7.6, C H ₃ CH ₂)	

1) прочерки означают, что вещество (смесь) является жидкостью при ст. у.

Таблица 2. Количественный состав смесей таутомеров соединений 2а-с (в

растворе в ДМСО- d_6) и пар региоизомеров **За-с/4а-с**

Соеди- нение	Таутомер 2.1, %	Таутомер 2.2, %	Смесь	Содержание соединения типа 3, %	Содержание соединения типа 4, %
2a	20	80	3a/4a	79	21
2b	21	79	3b/4b	85	15
2c	66	34	3c/4c	59	41

Література

- 1. J.C.Barrow at al. // J. Med. Chem., **2000**, 43, 2703-2718.
- 2. C.O.Kappe // Acc. Chem. Res., 2000, 33, 879-888.
- 3. C.O.Kappe // Tetrahedron, **1993**, 49, 32, 6937-6963.
- 4. Е.Л.Ханина и др. // Известия АН Латв. ССР, **1978**, 2, 197-202.
- 5. М.А.Колосов, В.Д.Орлов // Журн. орг. фарм. хим., **2005**, 3, 2(10), 17-22.

ТЕХНОЛОГІЇ СИТУАТИВНОГО МОДЕЛЮВАННЯ: ПРАКТИЧНА ПІДГОТОВКА СТУДЕНТІВ

Комар О.А.(Умань)

Сьогодні сталося чимало позитивних змін у системі освіти України. Так класична дидактика вищої школи з її закономірностями, принципами, формами та методами навчання, що вже склалися, не завжди задовольняє вимогам, обставинам часу. На допомогу класичним технологічним аспектам приходять нові, зокрема інтерактивні технології навчання.

Інтерактивні технології навчання О.І.Пометун і Л.В.Пироженко умовно розподілили на чотири групи залежно від мети і форм організації навчальної діяльності тих, хто навчається. Серед них і технології ситуативного моделювання. Ми звернемось саме до них у процесі підготовки студентів до їх професійної діяльності.

Навчальна ділова гра – це цілеспрямована сконструйована модель певного реального процесу, яка імітує професійну діяльність і направлена на формування і закріплення професійних умінь і навичок.

Педагогічні ігрові технології основані на ідеях і висновках К.Д.Ушинського, С.П.Рубінштейна, Ж.Фрейда та багатьох інших вчених, які розробляли методику ігрового навчання.

Ми згодні з думкою О.І.Пометун і Л.В.Пироженко про те, що останнім часом в організації самої гри відбувається зміщення акцентів з драматизації (форм, зовнішніх ознак гри) на її внутрішню сутність (моделювання події, явища, виконання певних ролей). У західній дидактиці поступово відходять від терміна "гра", який асоціюється з розвагами, і вживають поняття "симуляція, імітація" тощо[3,55]. Тому термін "гра" ми, в залежності від ситуації, ми будемо підміняти терміном "симуляція", або "імітація". Гра являє собою вид