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1 Introduction.

Autonomous motion of solid and liquid objects, called also self-propelling,
driven by various physico-chemical (mainly interfacial) phenomena attracted
considerable attention from researchers in the last decade (Pimienta and Antoine,
2014, Abbott and Velev 2016). A self-propelling particle moves on its own by
converting energy from the environment (e.g., chemical, electrical, thermal) into
mechanical motion with respect to the surrounding fluid or solid media (Bico and
Quere, 2002, Sharma et al. 2012, Ismagilov et al. 2012, Kiihn et al. 2015)

Various mechanisms of self-propelling have been introduced, including the
use of gradient surfaces (Daniel et al. 2001, Daniel et al. 2004, Zheng et al. 2008);
involving hot and cold Leidenfrost effects (Linke et al. 2006, Lagubeau et al.
2011, Agapov et al. 2014a, Agapov et al. 2014b, Kruse et al. 2015, Li et al. 2016);
soluto- and thermo-capillary Marangoni flows (Paxton et al. 2006, Chen et al.
2009, Jin et al. 2012, Zhao and Pumera 2014, Ban and Nakata 2015, Bormashenko
et al. 2015, Ooi et al. 2015, and exploiting micro- and nano-structured surfaces
(Lagubeau et al. 2011, Kruse et al. 2015, Li et a. 2016).

The interest in self-propelling systems arises from numerous fundamental
problems and applications, including guiding of self-assembly processes
(Ismagilov et al. 2012, Mendelson et al. 2000), understanding mechanisms of the
motion of bacteria and other microswimmers (Elgeti et al. 2015, Maass et al.
2016), lab-on-chip systems (Zhao and Pumera, 2014) drug delivery and
microsurgery (Ghosh and Fischer, 2009).

One of the most fascinating self-propelled objects is a camphor boat
(Kohira et al. 2001, Nakata and Matsuo, 2005, Nakata et al. 2014, Suematsu et al.
2014). Our paper reports towing of a floating liquid marble by a camphor boat.
Liquid marble represent a kind of non-coalescence droplet, exposed to the
intensive research recently (Derjaguin and  Prokhorov, 1993, Neitzel and
Dell'Aversana 2002) .

2 Experimental Procedures.

2.1. Manufacturing of liquid marbles
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Two kinds of liquid marbles coated with lycopodium and fumed fluorosilica
powder were prepared. Lycopodium (the average diameter of particles was about
30 um) was supplied by Fluka. The average diameter of particles, specified above,
was established with SEM imaging, carried out with high resolution SEM (JSM-
6510 LV). Distilled water (with the electric conductance of 0.6 mS) was used for
manufacturing the lycopodium coated liquid marbles.

The primary diameter of the fumed fluorosilica particles is 20-30 nm and
they originate from hydrophilic silica after reaction with tridecafluoro-1,1,1,2-
tetrahydrooctyltrimethoxysilane. The residual silanol content on their surfaces is
50% and the fluorine content is 10.9% (see Binks and Tyowua, 2013).

Marbles coated by lycopodium were filled with bi-distilled water
(resistivity 2 MQ cm as measured with LRC-meter Motech MT 4090). Marbles
coated by fumed fluorosilica powder were filled by a 70 vol.% aqueous solution
of ethanol, supplied by Bio-Lab Ltd, Liquid marbles were prepared according to
the protocol described in detail in our previous papers (Bormashenko et al. 2008,
Bormashenko et al. 2012).

2.2. Imaging of the self-propulsion

The motion of the marbles driven by camphor particles was registered by
the epy-video imaging using a Therm-App infrared camera. After capturing the
video, the movie was split into separate frames by the Video to JPG converter.

3 Results and discussion.

Consider first the behavior of liquid marbles coated by lycopodium, filled
with water driven by camphor boats. Liquid marbles, shown in Fig. 2 are non-
stick droplets encapsulated with micro- or nano-scaled solid particles. Since liquid
marbles were introduced in the pioneering works of Queére et al. (Aussillous and
Quére, 2001, Aussillous and Queéré, 2006), they have been exposed to intensive
theoretical and experimental research (McHale et al 2009, Tian et al 2010, Dandan
and Erbil 2009). Actuation and micro-transport of liquid marbles by various
stimuli (pH, UV and IR) were reported (Dupin et al 2009, Nakai et al 2013a,
Nakai et al 2013b, Paven et al 2016). It was shown that liquid marbles remain
stable for dozens of minutes when placed on liquid/air interfaces (Bormashenko et
al. 2009a). Marbles do not coalesce with the supporting liquid due to the air layer
separating a marble from water, similarly to the Leidenfrost droplets situation
(Bormashenko et al. 2009b, Linke et al. 2006).

The typical graph of the temporal dependence of the velocity of the center mass of
a liquid marble transported by a camphor particle

Now, consider the mechanism of the self-propulsion in detail. The typical
time dependence of the velocity of the center of mass of the boat is depicted in
Fig. 3. A maximal velocity of the center mass of the boat was registered as high as

cm

v™|=0.1™ . The characteristic time of the boat motion was ca. 5s. The equation
S

describing the motion of the boat is:

m d;;m — Ffr + CZLZVJ/ = _ZLWcm + aL2V7/ ) (l)

where m, L and v, are the mass, characteristic dimension and velocity of the
center mass of the boat correspondingly, «andyare the dimensionless
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coefficients depending on its shape, » and nare the surface tension and the
viscosity of the supporting liquid correspondingly [31].
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Figure 1. SEM image of the lycopodium particle Sum.
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